

ПРИМЕНЕНИЕ МЕТОДА ХЕМИЛЮМИНЕСЦЕНЦИИ ДЛЯ ОЦЕНКИ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ ЛЕЙКОЦИТОВ

БИОЛЮМИНИСЦЕНЦИЯ – особая форма хемилюминисценции

Биологическая роль:

- привлечение добычи или партнёров
- коммуникация
- предупреждение или угроза
- отпугивание или отвлечение
- маскировка на фоне естественных

источников света

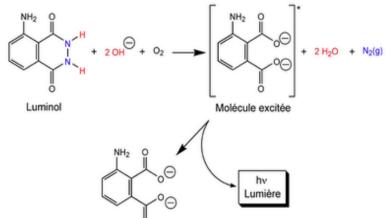
ХЕМИЛЮМИНСЦЕНТНЫЙ МЕТОД — это метод количественного (реже качественного) определения химических элементов и соединений, основанных на влиянии анализируемого вещества на интенсивность (спектр) хемилюминесценции (свечение, вызванное химическим воздействием).

ПРИНЦИП МЕТОДА

Электрон отсоединяется от одного И3 участников (восстановителя) реакции присоединяется другому (окислителю), что приводит к запасанию в системе химической энергии, позже которая выделится форме В лучистой

Перенос электрона на один из более высоких энергетических уровней, то есть переход продукта реакции в возбужденное состояние.

Переход продукта в основное состояние, сопровождающееся выделением энергии в виде кванта света (происходит собственно явление люминесценции).



Естественная хемилюминисценция биологического материал слабая

АКТИВАТОРЫ ХЕМИЛЮМИНИСЦЕНЦИИ:

- люминол (3-аминофтательй гидразид);
- люцигенин бис-Nметилакридиний

Под действием (радикала окислителя гидроксила) происходит образование радикала люминола, который затем вступает в реакцию супероксидным радикалом, образуя (диоксид). внутреннюю перекись образованию разложение приводит возбужденной 3-аминофталата. молекулы Переход этой молекулы в основное состояние сопровождается испусканием кванта света.

Где применять ХА?

- Скрининг биологически активных соединений.
- Подбор препаратов, влияющих на свободно-радикальное окисление.
- Прогнозирование эффективности действия антиоксидантов.

• Диспансеризация, диагностика скрытой патологии, состояния предболезни.

• Раннее выявление нарушений защитно-приспособительных • реакций организма.

• Оценка активности патологического процесса.

ЛАБОРАТОРНО-ОЗРИТООНТАИД АЗЖОТО В КАЯ

ФАРМАКОЛОГИЯ

ХЕМИЛЮМИНСЦЕНТНЫЙ АНАЛИЗ

БИОХИМИЯ

ЭКОЛОГИЯ

 Определение микроколичеств АТФ, НАДН и др.

Применение метода

Изучение молекулярных основ физиологических процессов, исследование общих закономерностей и механизмов развития патологических состояний.

- Оценка защитно-приспособительных возможностей организма при различных воздействиях: промышленно-производственных, медикаментозных, экологических.
- Совершенствование и целенаправленный поиск эффективных способов диагностики, профилактики и лечения.

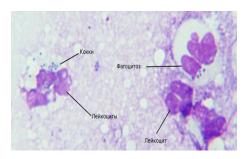
ФИЗИОЛОГИЯ, ПАТОФИЗИОЛОГИЯ, БИОФИЗИКА, МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ДР.

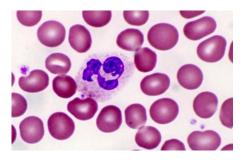
- Раннее выявление негативного действия факторов среды.
- Оценка степени патогенности внешних воздействий.
- Биоэкологический мониторинг.

Для чего применять XA?

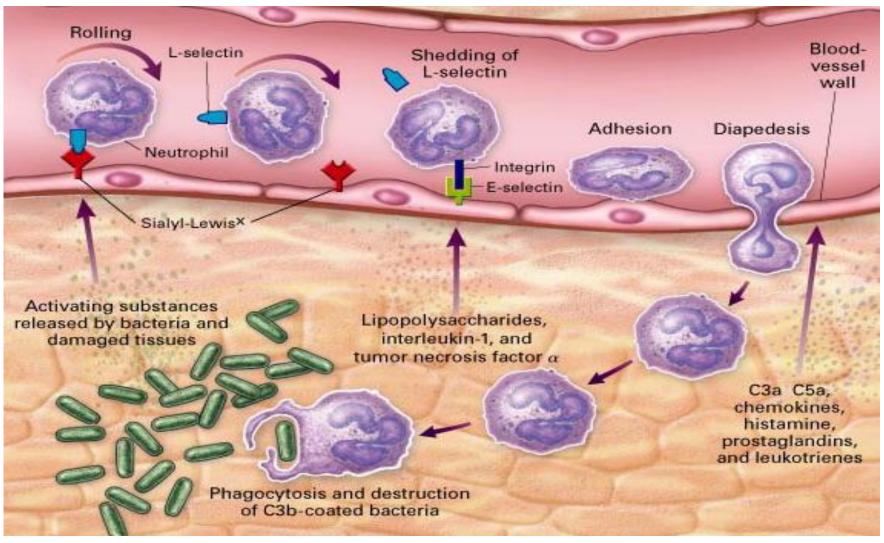
Хемилюминесцентный анализ используют для измерения содержания АТФ, и АТФ-азы, креатинкиназы, аденилатциклазы, фосфодиэстеразы, миелопероксидазы, протеолитических ферментов, ферментов монооксигеназной системы печени и др.

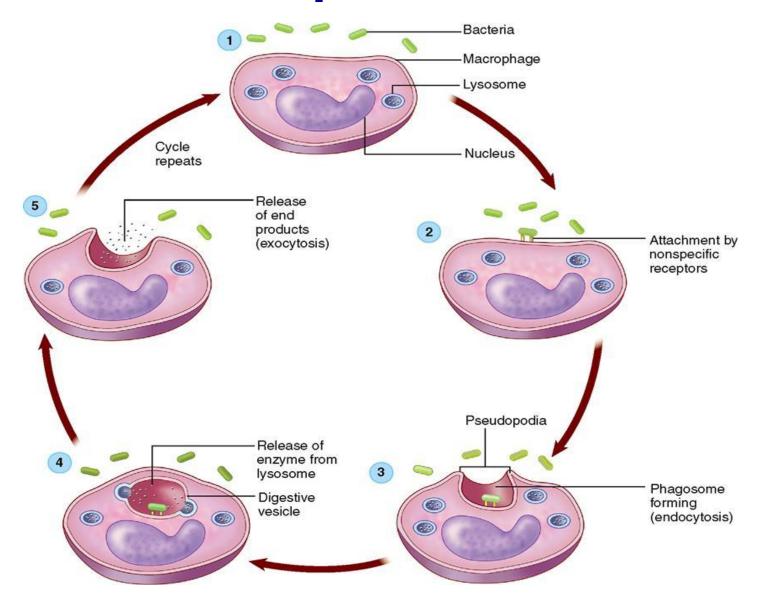
Метод эффективен для оценки функционального состояния фагоцитов периферической крови (гранулоцитов и моноцитов), его используют для прогнозирования тяжести заболевания и контроля эффективности терапии при воспалительных процессах.


Метод определения супермикроколичеств гемоглобина в крови.


ПРИМЕНЕНИЕ ХЕМИЛЮМИНСЦЕНТНОГО АНАЛИЗА ДЛЯ ОЦЕНКИ ФАГОЦИТАРНОЙ АКТИВНОСТИ ЛЕЙКОЦИТОВ

ФАГОЦИТОЗ — ПРОЦЕСС, ПРИ КОТОРОМ СПЕЦИАЛЬНО ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ЭТОГО КЛЕТКИ КРОВИ И ТКАНЕЙ ОРГАНИ ЗМА (ФАГОЦИТЫ) ЗАХВАТЫВАЮТ И ПЕРЕВАРИВАЮТ ТВЁРДЫЕ ЧАСТИЦЫ.


- Впервые ХЛ лейкоцитов при фагоцитозе была обнаружена в 1972 г. С этого времени ХЛ широко используется для исследования состояния лейкоцитов, нейтрофилов, моноцитов, эозинофилов и лимфоцитов.
- Уровень XЛ при фагоцитозе характеризует интенсивность «респираторного взрыва» в клетках с продукцией активных форм кислорода, оказывающих бактерицидное действие.
- Механизм этого действия определяется деполяризацией мембранного потенциала при связывании рецепторов фагоцитов, повышением концентрации внутриклеточного кальция, изменением уровня кальмодулина с активацией фосфолипаз и НАДФНоксидаз.
- При этом метаболизм арахидоновой кислоты ускоряется, повышается продукция простагландинов и лейкотриенов регуляторов иммунного ответа, ингибирующих ХЛ в системе миелопероксидазы.



Стадии фагоцитоза: 1. – хемотаксис лейкоцитов

Стадии фагоцитоза:

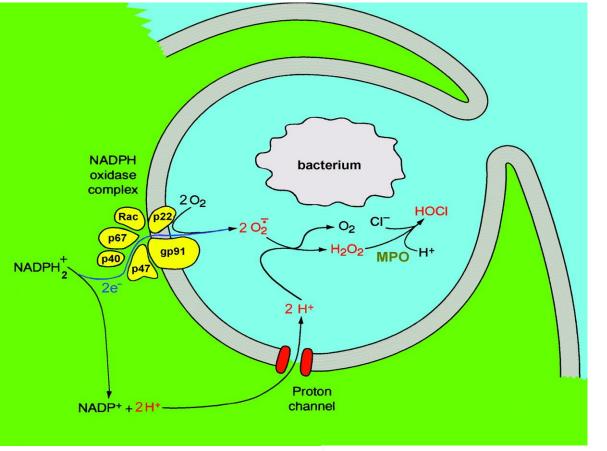
Механизмы внутриклеточного киллинга (внутриклеточной цитотоксичности) фагоцитов

1.Кислороднезависимые механизмы (образование

фаголизосомы и действие содержимого лизосом на фагосому)

Антимикробные пептиды

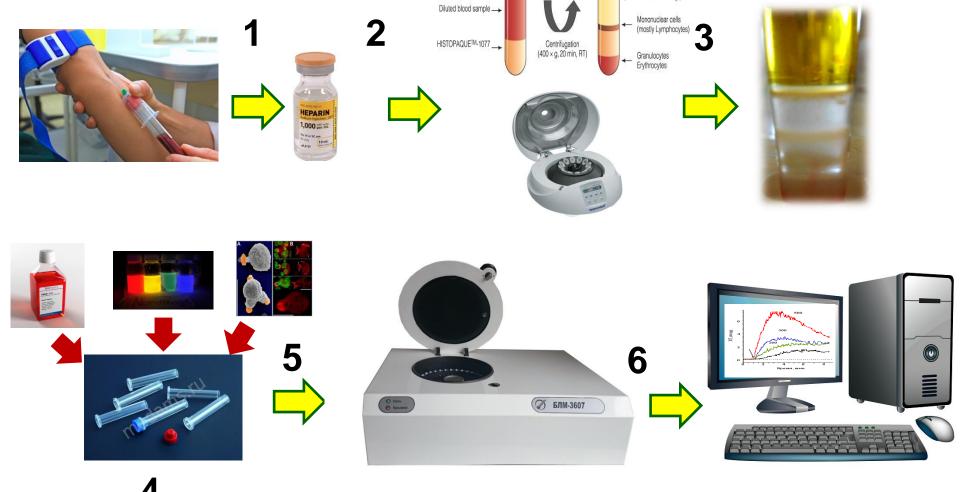
2. Кислородзависимые механизмы


(«респираторный взрыв»)

- 1. Лизоцим \rightarrow расщепляет клеточную стенку (КС)
- Катионные белки (дефензины, фагоцитин, и др.) \rightarrow повреждают ЦПМ
- 3. Фосфолипаза А2, С
- 4. Рибонуклеаза, дезоксирибонуклеаза
- 5. Лактоферрин → «отнимает» Fe
- 6. Low pH

- Супероксидный радикал
- Перекись водорода Гидроксильный радикал
- NO, пероксинитрит
- Синглетный кислород

пол, омб, повреждение НК



Внутриклеточный киллинг по механизму «респираторного взрыва» в фагоцитах

ПРОВЕДЕНИЕ ХЕМИЛЮМИНЕСЦЕНТНОГО АНАЛИЗА (XA)

Plasma including platelets

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ХА

- Порядок работы на приборе с помощью программы «HL2V2.5»
- Обработка полученных данных с помощью программы «BLM36 Obrab»

Примеры применения хемилюминисцентного анализа

Оценка влияния физической нагрузки на фагоцитоз нейтрофилов

Оценка иммуннотропных свойств настойки колюрии гравилатовидной

ПРИМЕРЫ

Оценка фагоцитарной активности лейкоцитов при аллергических заболеваниях

Оценка состояния активности ферментов антиоксидантной системы

Результаты оценки интенсивности окислительного взрыва в нейтрофилах у юношей и девушек 19-20 лет*

Показатели	Состояние покоя	Функц. проба	Уровень значимости, р				
Спонтанная хемилюминесценция							
Т тах, сек	845,0 (0,0-2823,0)	237,0(53,0-687,0)	0,023				
I max, o.e. ×10 ³	o.e. ×10 ³ 139,5(46,0-1227,0) 3701,5(1227,0-		0,041				
S, o.e. ×10 ⁵	133470,0(115500,0-	3092921,0(2588414,0-	0,002				
	152613,0)	6524141,0)					
Зимозан-индуцированная хемилюминесценция							
Т тах, сек	4823,5(4285,0-4945,0)	845,0(5,020-1743,0)	0,041				
I max, o.e. ×10 ³	1336,0(214,0-1613,0)	9837,5(7049,0-13098,0)	0,041				
S, o.e. ×10 ⁵	2830755,0(601152,0-	26454049,0(23230430,0-	0,041				
	4427544,0)	39792983,0)					
S инд/ S сп	11,8396 (3,1256-	8,3198(3,9514-9,9924)	0,003				
	36,8726)						

^{*}Саранчина Ю.В., Кеберле С.П. ВЛИЯНИЕ ОСТРОЙ ФИЗИЧЕСКОЙ НАГРУЗКИ НА ХЕМИЛЮМИНИСЦЕНТНУЮ АКТИВНОСТЬ НЕЙТРОФИЛОВ // Медицинская иммунология. 2017. Т. 19. № S. C. 417.

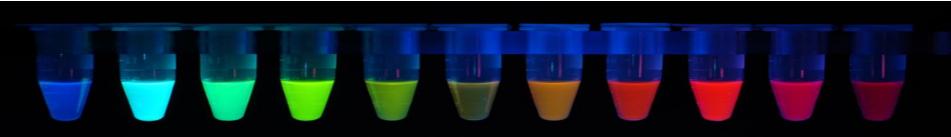
*Результаты оценки интенсивности окислительного взрыва в лейкоцитах мышей, которым вводили настойку колюрии гравилатовидной

Показатели	Контрольная группа	к1	Уровень значимости, р			
Спонтанная хемилюминисценция						
Т тах, сек	164,0 (160,0-165,0)	199,0 (165,0-324,0)	0.13			
I max, o.e. ×	3711,0 (3168,0 - 3953,0)	3140,0 (288,0 - 3702,0)	0.16			
S, o.e. ×	339047,0 (311130,0- 357709,0)	451574 (253656- 931056)	0.25			
Зимозан -индуцированная хемилюминисценция						
Т тах, сек	173,0 (168,0-525,0)	562 (245-776)	1.00			
I max, o.e. ×	3892,0 (3439,0-4043,0)	3785 (2661-4200)	0.25			
S max, o.e. ×	565980 (348780- 1562940)	1676581 (763812- 2725344)	0.16			
S инд/ S сп	1.58 (1.18-5.02)	2.14 (1.71-6.24)	0.25			

^{*}Бочарова И.А., Данилов Р.И., Дутова С.В. Влияние извлечения Coluria geoides (Rosaceae) на функциональную активность фагоцитов// Человек и лекарство. – 2016. – С.167

Показатели спонтанной и индуцированной хемилюминесценции лейкоцитов крови у детей 3-6 лет с атопическим дерматитом и респираторным аллергозом ($M \pm m$) *

Показатели	3доровые N=24	Ат.дерматит N=35	Респ.аллергоз N=21			
Спонтанная хемилюминесценция						
Ттах, (сек.)	2220,6±181,6	2065,2±142,6	1797,1±85,2 P ₁ <0,05			
Imax, (o.e.×10³)	2,99±0,54	1,90±0,23 P ₁ <0,05	2,55±0,33 0,1>P ₂ >0,05			
S, (o.e. ×10 ⁵)	3,58±0,98	2,91±0,51	2,73±0,33			
Хемилюминесценция, индуцированная зимозаном						
Ттах, (сек.)	2460,0±81,2	2212,6±74,5 P ₁ <0,05	2181,8±84,2 P ₁ <0,05			
Imax, (o.e. ×10³)	11,51±1,73	4,96±0,69 P ₁ <0,001	6,71±1,00 P ₁ <0,05			
S, (o.e. ×10 ⁵)	11,27±2,72	5,38±0,82 P ₁ <0,05	11,05±1,94 P ₁ <0,01			
S зим./Sспон.	3,94±0,70	2,70±0,29	2,93±0,33			


^{*}Применение хемилюминисцентного анализа для оценки функциональной активности лейкоцитов крови у детей с иммунопатологическими состояниями (Методические рекомендации) / сост.: А.А. Савченко, Л.М. Куртасова, Н.А. Шакина, А.Р. Шмидт. – Красноярск: Краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями. – 1996 г. – 20 с.

Показатели активности внутриклеточных ферментов лейкоцитов крови у больных атрофическим гастритом и раком желудка, ассоциированными с Helicobacter pylori *

Показатели	Контрольная группа	Больные АХГ	Больные РЖ	Уровень статистической значимости, р
Глюкозо-6- фосфат – дегидрогеназ а (Г6ФДГ), мкЕ	318,68±96,80	8346,54±2867,96	1259,41±745,77	P1 = 0,017 P2 = 0,026 P3=0,001
Глутатион- редуктаза (ГР), мкЕ	4,23±2,98	78,67±30,91	71,07±29,91	P1 = 0,05 P2 = 0,038 P3=0,005
Интерпретац	ия результата	Повышение активности воспаления	Истощение метаболически х ресурсов	
*Саранчина ОСОБЕННОСТИ HELICOBACTER / Хирургия. Журна	PYLORI-ИНД	<i>Штыгашева</i> КОЙ АКТИВНОСТИ УЦИРОВАННОГО a. 2013. № 3. С. 41-44.	О.В., Аге ЛИМФОЦИТОВ ОКИСЛИТЕЛЬНОГО	в условиях

ЗАКЛЮЧЕНИЕ

- Спектр применения ХЛ широкий.
- ХЛ является перспективным методом лабораторной диагностики.
- XЛ может быть использована как для диагностики донозоологических форм, постановки диагноза и так и как маркер эффективности проводимой терапии.

